Integrates LiteLLM for Unified Access to Multiple LLM Models (#5925)

* adds litellm gateway

* Fixes repeating code

* Fixes error exposing

* Fixes error for None text

* handles logging exception

* Adds multiple providers support

* handling edge cases

* adds new envs to instance store

* strategy pattern for llm config

---------

Co-authored-by: akash5100 <akashzsh08@gmail.com>
This commit is contained in:
Akash Verma
2024-12-31 13:57:26 +05:30
committed by GitHub
parent 752a27a175
commit 8833e4e23b
3 changed files with 172 additions and 75 deletions

View File

@@ -1,71 +1,169 @@
# Python imports
import requests
# Python import
import os
from typing import List, Dict, Tuple
# Third party import
import litellm
import requests
# Third party imports
from openai import OpenAI
from rest_framework.response import Response
from rest_framework import status
from rest_framework.response import Response
# Django imports
# Module imports
from ..base import BaseAPIView
from plane.app.permissions import allow_permission, ROLE
from plane.db.models import Workspace, Project
from plane.app.serializers import ProjectLiteSerializer, WorkspaceLiteSerializer
# Module import
from plane.app.permissions import ROLE, allow_permission
from plane.app.serializers import (ProjectLiteSerializer,
WorkspaceLiteSerializer)
from plane.db.models import Project, Workspace
from plane.license.utils.instance_value import get_configuration_value
from plane.utils.exception_logger import log_exception
from ..base import BaseAPIView
class LLMProvider:
"""Base class for LLM provider configurations"""
name: str = ""
models: List[str] = []
default_model: str = ""
@classmethod
def get_config(cls) -> Dict[str, str | List[str]]:
return {
"name": cls.name,
"models": cls.models,
"default_model": cls.default_model,
}
class OpenAIProvider(LLMProvider):
name = "OpenAI"
models = ["gpt-3.5-turbo", "gpt-4o-mini", "gpt-4o", "o1-mini", "o1-preview"]
default_model = "gpt-4o-mini"
class AnthropicProvider(LLMProvider):
name = "Anthropic"
models = [
"claude-3-5-sonnet-20240620",
"claude-3-haiku-20240307",
"claude-3-opus-20240229",
"claude-3-sonnet-20240229",
"claude-2.1",
"claude-2",
"claude-instant-1.2",
"claude-instant-1"
]
default_model = "claude-3-sonnet-20240229"
class GeminiProvider(LLMProvider):
name = "Gemini"
models = ["gemini-pro", "gemini-1.5-pro-latest", "gemini-pro-vision"]
default_model = "gemini-pro"
SUPPORTED_PROVIDERS = {
"openai": OpenAIProvider,
"anthropic": AnthropicProvider,
"gemini": GeminiProvider,
}
def get_llm_config() -> Tuple[str | None, str | None, str | None]:
"""
Helper to get LLM configuration values, returns:
- api_key, model, provider
"""
api_key, provider_key, model = get_configuration_value([
{
"key": "LLM_API_KEY",
"default": os.environ.get("LLM_API_KEY", None),
},
{
"key": "LLM_PROVIDER",
"default": os.environ.get("LLM_PROVIDER", "openai"),
},
{
"key": "LLM_MODEL",
"default": os.environ.get("LLM_MODEL", None),
},
])
provider = SUPPORTED_PROVIDERS.get(provider_key.lower())
if not provider:
log_exception(ValueError(f"Unsupported provider: {provider_key}"))
return None, None, None
if not api_key:
log_exception(ValueError(f"Missing API key for provider: {provider.name}"))
return None, None, None
# If no model specified, use provider's default
if not model:
model = provider.default_model
# Validate model is supported by provider
if model not in provider.models:
log_exception(ValueError(
f"Model {model} not supported by {provider.name}. "
f"Supported models: {', '.join(provider.models)}"
))
return None, None, None
return api_key, model, provider_key
def get_llm_response(task, prompt, api_key: str, model: str, provider: str) -> Tuple[str | None, str | None]:
"""Helper to get LLM completion response"""
final_text = task + "\n" + prompt
try:
# For Gemini, prepend provider name to model
if provider.lower() == "gemini":
model = f"gemini/{model}"
response = litellm.completion(
model=model,
messages=[{"role": "user", "content": final_text}],
api_key=api_key,
)
text = response.choices[0].message.content.strip()
return text, None
except Exception as e:
log_exception(e)
error_type = e.__class__.__name__
if error_type == "AuthenticationError":
return None, f"Invalid API key for {provider}"
elif error_type == "RateLimitError":
return None, f"Rate limit exceeded for {provider}"
else:
return None, f"Error occurred while generating response from {provider}"
class GPTIntegrationEndpoint(BaseAPIView):
@allow_permission([ROLE.ADMIN, ROLE.MEMBER])
def post(self, request, slug, project_id):
OPENAI_API_KEY, GPT_ENGINE = get_configuration_value(
[
{
"key": "OPENAI_API_KEY",
"default": os.environ.get("OPENAI_API_KEY", None),
},
{
"key": "GPT_ENGINE",
"default": os.environ.get("GPT_ENGINE", "gpt-3.5-turbo"),
},
]
)
api_key, model, provider = get_llm_config()
# Get the configuration value
# Check the keys
if not OPENAI_API_KEY or not GPT_ENGINE:
if not api_key or not model or not provider:
return Response(
{"error": "OpenAI API key and engine is required"},
{"error": "LLM provider API key and model are required"},
status=status.HTTP_400_BAD_REQUEST,
)
prompt = request.data.get("prompt", False)
task = request.data.get("task", False)
if not task:
return Response(
{"error": "Task is required"}, status=status.HTTP_400_BAD_REQUEST
)
final_text = task + "\n" + prompt
client = OpenAI(api_key=OPENAI_API_KEY)
response = client.chat.completions.create(
model=GPT_ENGINE, messages=[{"role": "user", "content": final_text}]
)
text, error = get_llm_response(task, request.data.get("prompt", False), api_key, model, provider)
if not text and error:
return Response(
{"error": "An internal error has occurred."},
status=status.HTTP_500_INTERNAL_SERVER_ERROR,
)
workspace = Workspace.objects.get(slug=slug)
project = Project.objects.get(pk=project_id)
text = response.choices[0].message.content.strip()
text_html = text.replace("\n", "<br/>")
return Response(
{
"response": text,
"response_html": text_html,
"response_html": text.replace("\n", "<br/>"),
"project_detail": ProjectLiteSerializer(project).data,
"workspace_detail": WorkspaceLiteSerializer(workspace).data,
},
@@ -76,47 +174,33 @@ class GPTIntegrationEndpoint(BaseAPIView):
class WorkspaceGPTIntegrationEndpoint(BaseAPIView):
@allow_permission(allowed_roles=[ROLE.ADMIN, ROLE.MEMBER], level="WORKSPACE")
def post(self, request, slug):
OPENAI_API_KEY, GPT_ENGINE = get_configuration_value(
[
{
"key": "OPENAI_API_KEY",
"default": os.environ.get("OPENAI_API_KEY", None),
},
{
"key": "GPT_ENGINE",
"default": os.environ.get("GPT_ENGINE", "gpt-3.5-turbo"),
},
]
)
# Get the configuration value
# Check the keys
if not OPENAI_API_KEY or not GPT_ENGINE:
api_key, model, provider = get_llm_config()
if not api_key or not model or not provider:
return Response(
{"error": "OpenAI API key and engine is required"},
{"error": "LLM provider API key and model are required"},
status=status.HTTP_400_BAD_REQUEST,
)
prompt = request.data.get("prompt", False)
task = request.data.get("task", False)
if not task:
return Response(
{"error": "Task is required"}, status=status.HTTP_400_BAD_REQUEST
)
final_text = task + "\n" + prompt
text, error = get_llm_response(task, request.data.get("prompt", False), api_key, model, provider)
if not text and error:
return Response(
{"error": "An internal error has occurred."},
status=status.HTTP_500_INTERNAL_SERVER_ERROR,
)
client = OpenAI(api_key=OPENAI_API_KEY)
response = client.chat.completions.create(
model=GPT_ENGINE, messages=[{"role": "user", "content": final_text}]
)
text = response.choices[0].message.content.strip()
text_html = text.replace("\n", "<br/>")
return Response(
{"response": text, "response_html": text_html}, status=status.HTTP_200_OK
{
"response": text,
"response_html": text.replace("\n", "<br/>"),
},
status=status.HTTP_200_OK,
)

View File

@@ -132,20 +132,33 @@ class Command(BaseCommand):
"is_encrypted": False,
},
{
"key": "OPENAI_API_KEY",
"value": os.environ.get("OPENAI_API_KEY"),
"category": "OPENAI",
"key": "LLM_API_KEY",
"value": os.environ.get("LLM_API_KEY"),
"category": "AI",
"is_encrypted": True,
},
{
"key": "GPT_ENGINE",
"key": "LLM_PROVIDER",
"value": os.environ.get("LLM_PROVIDER", "openai"),
"category": "AI",
"is_encrypted": False,
},
{
"key": "LLM_MODEL",
"value": os.environ.get("LLM_MODEL", "gpt-4o-mini"),
"category": "AI",
"is_encrypted": False,
},
# Deprecated, use LLM_MODEL
{
"key": "GPT_ENGINE",
"value": os.environ.get("GPT_ENGINE", "gpt-3.5-turbo"),
"category": "SMTP",
"is_encrypted": False,
},
{
"key": "UNSPLASH_ACCESS_KEY",
"value": os.environ.get("UNSPLASH_ACESS_KEY", ""),
"value": os.environ.get("UNSPLASH_ACCESS_KEY", ""),
"category": "UNSPLASH",
"is_encrypted": True,
},

View File

@@ -37,7 +37,7 @@ uvicorn==0.29.0
# sockets
channels==4.1.0
# ai
openai==1.25.0
litellm==1.51.0
# slack
slack-sdk==3.27.1
# apm